The Globe and Mail

Go to the Globe and Mail homepage

Jump to main navigationJump to main content

Press release from Business Wire

Alnylam Receives Additional Orphan Drug Designation from U.S. Food & Drug Administration for ALN-AT3, an RNAi Therapeutic for the Treatment of Hemophilia

<p class='bwalignc'> <i>– Orphan Drug Designation for ALN-AT3 Now Includes Treatment of Both Hemophilia A and Hemophilia B –</i> </p>

Tuesday, August 20, 2013

Alnylam Receives Additional Orphan Drug Designation from U.S. Food & Drug Administration for ALN-AT3, an RNAi Therapeutic for the Treatment of Hemophilia

08:00 EDT Tuesday, August 20, 2013

CAMBRIDGE, Mass. (Business Wire) -- Alnylam Pharmaceuticals, Inc. (Nasdaq: ALNY), a leading RNAi therapeutics company, announced today that the U.S. Food & Drug Administration (FDA) has granted an Orphan Drug Designation (ODD) to ALN-AT3 as a therapeutic for the treatment of hemophilia A. As reported last week, the FDA has also granted ODD to ALN-AT3 for the treatment of hemophilia B. Alnylam is developing ALN-AT3, a subcutaneously administered RNAi therapeutic targeting antithrombin (AT), for the treatment of hemophilia – including hemophilia A, hemophilia B, and hemophilia A or B with “inhibitors” – and other Rare Bleeding Disorders (RBD).

“We are very pleased that the FDA has granted Orphan Drug Designation for ALN-AT3 now for both the treatment of hemophilia A and hemophilia B. As a subcutaneously delivered RNAi therapeutic, we believe it represents an innovative approach for the management of hemophilia and has great potential to make a meaningful impact in the treatment of this often debilitating bleeding disorder,” said Saraswathy (Sara) Nochur, Ph.D., Senior Vice President, Regulatory Affairs and Quality Assurance at Alnylam. “ALN-AT3 is a key program in our ‘Alnylam 5x15' product development and commercialization strategy, and we look forward to advancing this promising RNAi therapeutic into the clinic in the months to come.”

At the recent Congress of the International Society on Thrombosis and Haemostasis, Alnylam presented pre-clinical data demonstrating that ALN-AT3 can normalize thrombin generation and improve hemostasis in hemophilia mice and can fully correct thrombin generation in a non-human primate (NHP) hemophilia “inhibitor” model. ALN-AT3 utilizes the company's proprietary GalNAc conjugate delivery platform, enabling subcutaneous dose administration. Alnylam plans to file an investigational new drug (IND) application for ALN-AT3 in the fourth quarter of 2013 and initiate a Phase I clinical trial in early 2014.

The FDA Office of Orphan Products Development (OOPD) mission is to advance the evaluation and development of products that demonstrate promise for the diagnosis and/or treatment of rare diseases or conditions. OOPD provides incentives for sponsors to develop products for rare diseases. The Orphan Drug Designation program provides orphan status to drugs and biologics which are defined as those intended for the safe and effective treatment, diagnosis or prevention of rare diseases/disorders that affect fewer than 200,000 people in the U.S.

About Hemophilia and Rare Bleeding Disorders (RBD)

Hemophilias are hereditary disorders caused by genetic deficiencies of various blood clotting factors, resulting in recurrent bleeds into joints, muscles, and other major internal organs. Hemophilia A is defined by loss-of-function mutations in factor VIII, and there are greater than 40,000 people in the U.S. and E.U. Hemophilia B, defined by loss-of-function mutations in factor IX, affects greater than 9,500 people in the U.S. and E.U. Other Rare Bleeding Disorders (RBD) are defined by congenital deficiencies of other blood coagulation factors, including Factors II, V, VII, X, and XI, and there are about 1,000 people worldwide with a severe bleeding phenotype. Standard treatment for people with hemophilia involves replacement of the missing clotting factor either as prophylaxis or on-demand therapy. However, as many as one third of people with hemophilia A will develop an antibody to their replacement factor – a very serious complication; these 'inhibitor' subjects become refractory to standard replacement therapy. There exists a small subset of people with hemophilia who have co-inherited a prothrombotic mutation, such as factor V Leiden, antithrombin deficiency, protein C deficiency, and prothrombin G20210A. People with hemophilia that have co-inherited these prothrombotic mutations are characterized as having a later onset of disease, lower risk of bleeding, and reduced requirements for factor VIII or factor IX treatment as part of their disease management. There exists a significant need for novel therapeutics to treat hemophilia and RBD.

About Antithrombin (AT)

Antithrombin (AT, also known as “antithrombin III” and “SERPINC1”) is a liver expressed plasma protein and member of the “serpin” family of proteins that acts as an important endogenous anticoagulant by inactivating factor Xa and thrombin. AT plays a key role in normal hemostasis, which has evolved to balance the need to control blood loss through clotting with the need to prevent pathologic thrombosis through anticoagulation. In hemophilia, the loss of certain procoagulant factors (Factor VIII and Factor IX, in the case of hemophilia A and B, respectively) results in an imbalance of the hemostatic system toward a bleeding phenotype. In contrast, in thrombophilia (e.g., factor V Leiden, protein C deficiency, antithrombin deficiency, amongst others), certain mutations result in an imbalance in the hemostatic system toward a thrombotic phenotype. Since co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, inhibition of AT defines a novel strategy for improving hemostasis.

About RNA Interference (RNAi)

RNAi (RNA interference) is a revolution in biology, representing a breakthrough in understanding how genes are turned on and off in cells, and a completely new approach to drug discovery and development. Its discovery has been heralded as “a major scientific breakthrough that happens once every decade or so,” and represents one of the most promising and rapidly advancing frontiers in biology and drug discovery today which was awarded the 2006 Nobel Prize for Physiology or Medicine. RNAi is a natural process of gene silencing that occurs in organisms ranging from plants to mammals. By harnessing the natural biological process of RNAi occurring in our cells, the creation of a major new class of medicines, known as RNAi therapeutics, is on the horizon. Small interfering RNA (siRNA), the molecules that mediate RNAi and comprise Alnylam's RNAi therapeutic platform, target the cause of diseases by potently silencing specific mRNAs, thereby preventing disease-causing proteins from being made. RNAi therapeutics have the potential to treat disease and help patients in a fundamentally new way.

About Alnylam Pharmaceuticals

Alnylam is a biopharmaceutical company developing novel therapeutics based on RNA interference, or RNAi. The company is leading the translation of RNAi as a new class of innovative medicines with a core focus on RNAi therapeutics toward genetically defined targets for the treatment of serious, life-threatening diseases with limited treatment options for patients and their caregivers. These include: ALN-TTR02, an intravenously delivered RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR) in patients with familial amyloidotic polyneuropathy (FAP); ALN-TTRsc, a subcutaneously delivered RNAi therapeutic targeting TTR for the treatment of ATTR in patients with familial amyloidotic cardiomyopathy (FAC); ALN-AT3, an RNAi therapeutic targeting antithrombin (AT) for the treatment of hemophilia and rare bleeding disorders (RBD); ALN-AS1, an RNAi therapeutic targeting aminolevulinate synthase-1 (ALAS-1) for the treatment of porphyria including acute intermittent porphyria (AIP); ALN-PCS, an RNAi therapeutic targeting PCSK9 for the treatment of hypercholesterolemia; ALN-TMP, an RNAi therapeutic targeting TMPRSS6 for the treatment of beta-thalassemia and iron-overload disorders; ALN-AAT, an RNAi therapeutic targeting alpha-1-antitrypsin (AAT) for the treatment of AAT deficiency liver disease; and ALN-CC5, an RNAi therapeutic targeting complement component C5 for the treatment of complement-mediated diseases, amongst other programs. As part of its “Alnylam 5x15TM” strategy, the company expects to have five RNAi therapeutic products for genetically defined diseases in clinical development, including programs in advanced stages, on its own or with a partner by the end of 2015. Alnylam has additional partnered programs in clinical or development stages, including ALN-RSV01 for the treatment of respiratory syncytial virus (RSV) infection and ALN-VSP for the treatment of liver cancers. The company's leadership position on RNAi therapeutics and intellectual property have enabled it to form major alliances with leading companies including Merck, Medtronic, Novartis, Biogen Idec, Roche, Takeda, Kyowa Hakko Kirin, Cubist, Ascletis, Monsanto, Genzyme, and The Medicines Company. In addition, Alnylam holds an equity position in Regulus Therapeutics Inc., a company focused on discovery, development, and commercialization of microRNA therapeutics. Alnylam has also formed Alnylam Biotherapeutics, a division of the company focused on the development of RNAi technologies for applications in biologics manufacturing, including recombinant proteins and monoclonal antibodies. Alnylam's VaxiRNA™ platform applies RNAi technology to improve the manufacturing processes for vaccines; GlaxoSmithKline is a collaborator in this effort. Alnylam scientists and collaborators have published their research on RNAi therapeutics in over 100 peer-reviewed papers, including many in the world's top scientific journals such as Nature, Nature Medicine, Nature Biotechnology, and Cell. Founded in 2002, Alnylam maintains headquarters in Cambridge, Massachusetts. For more information, please visit www.alnylam.com.

About “Alnylam 5x15™”

The “Alnylam 5x15” strategy, launched in January 2011, establishes a path for development and commercialization of novel RNAi therapeutics toward genetically defined targets for the treatment of diseases with high unmet medical need. Products arising from this initiative share several key characteristics including: a genetically defined target and disease; the potential to have a major impact in a high unmet need population; the ability to leverage the existing Alnylam RNAi delivery platform; the opportunity to monitor an early biomarker in Phase I clinical trials for human proof of concept; and the existence of clinically relevant endpoints for the filing of a new drug application (NDA) with a focused patient database and possible accelerated paths for commercialization. By the end of 2015, the company expects to have five such RNAi therapeutic programs in clinical development, including programs in advanced stages, on its own or with a partner. The “Alnylam 5x15” programs include: ALN-TTR02, an intravenously delivered RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR) in patients with familial amyloidotic polyneuropathy (FAP); ALN-TTRsc, a subcutaneously delivered RNAi therapeutic targeting TTR for the treatment of ATTR in patients with familial amyloidotic cardiomyopathy (FAC); ALN-AT3, an RNAi therapeutic targeting antithrombin (AT) for the treatment of hemophilia and rare bleeding disorders (RBD); ALN-AS1, an RNAi therapeutic targeting aminolevulinate synthase-1 (ALAS-1) for the treatment of porphyria including acute intermittent porphyria (AIP); ALN-PCS, an RNAi therapeutic targeting PCSK9 for the treatment of hypercholesterolemia; ALN-TMP, an RNAi therapeutic targeting TMPRSS6 for the treatment of beta-thalassemia and iron-overload disorders; ALN-AAT, an RNAi therapeutic targeting alpha-1-antitrypsin (AAT) for the treatment of AAT deficiency liver disease; and ALN-CC5, an RNAi therapeutic targeting complement component C5 for the treatment of complement-mediated diseases, amongst other programs. Alnylam intends to focus on developing and commercializing certain programs from this product strategy itself in North and South America, Europe, and other parts of the world; these include ALN-TTR, ALN-AT3, ALN-AS1, and ALN-CC5.

Alnylam Forward-Looking Statements

Various statements in this release concerning Alnylam's future expectations, plans and prospects, including without limitation, Alnylam's expectations regarding its “Alnylam 5x15” product strategy, Alnylam's views with respect to the potential for RNAi therapeutics, including ALN-AT3 for the treatment of hemophilia and Rare Bleeding Disorders, its expectations with respect to the timing and success of its clinical and pre-clinical trials, the expected timing of regulatory filings, including its plan to file an IND application and initiate clinical trials for ALN-AT3, its plans to seek a partner for certain ‘Alnylam 5x15' programs, and its plans regarding commercialization of RNAi therapeutics, constitute forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Alnylam's ability to manage operating expenses, Alnylam's ability to discover and develop novel drug candidates and delivery approaches, successfully demonstrate the efficacy and safety of its drug candidates, the pre-clinical and clinical results for its product candidates, which may not support further development of product candidates, actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials, obtaining, maintaining and protecting intellectual property, Alnylam's ability to enforce its patents against infringers and defend its patent portfolio against challenges from third parties, obtaining regulatory approval for products, competition from others using technology similar to Alnylam's and others developing products for similar uses, Alnylam's ability to obtain additional funding to support its business activities and establish and maintain strategic business alliances and new business initiatives, Alnylam's dependence on third parties for development, manufacture, marketing, sales and distribution of products, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the “Risk Factors” filed with Alnylam's current report on Form 10-Q filed with the Securities and Exchange Commission (SEC) on August 9, 2013 and in other filings that Alnylam makes with the SEC. In addition, any forward-looking statements represent Alnylam's views only as of today and should not be relied upon as representing its views as of any subsequent date. Alnylam explicitly disclaims any obligation to update any forward-looking statements.

Alnylam Pharmaceuticals, Inc.
Cynthia Clayton, 617-551-8207
Vice President, Investor Relations and Corporate Communications
or
Spectrum
Amanda Sellers (Media), 202-955-6222 x2597

Products
  • Globe Unlimited

    Digital all access pass across devices. subscribe

  • The Globe and Mail Newspaper

    Newspaper delivered to your doorstep. subscribe

  • Globe2Go

    The digital replica of our newspaper. subscribe

  • Globe eBooks

    A collection of articles by the Globe. subscribe

See all Globe Products

Advertise with us

GlobeLink.ca

Your number one partner for reaching Canada's Influential Achievers. learn more

The Globe at your Workplace
Our Company
Customer Service
Globe Recognition
Mobile Apps
NEWS APP
INVESTING APP
Other Sections