Go to the Globe and Mail homepage

Jump to main navigationJump to main content

Sponsored Content

Dr. Masoom Haider, chief of medical imaging, is guiding Sunnybrook into an innovative future of diagnostics and treatment. He is pictured with the new Artemis system supporting better image-navigated prostatecancer biopsies. (Tim Fraser)

Dr. Masoom Haider, chief of medical imaging, is guiding Sunnybrook into an innovative future of diagnostics and treatment. He is pictured with the new Artemis system supporting better image-navigated prostatecancer biopsies.

(Tim Fraser)

A Special Information Feature brought to you by Sunnybrook

Images of the future of medicine Add to ...

ADVANCES IN MEDICAL IMAGING AT SUNNYBROOK WILL DRAMATICALLY IMPROVE OUTCOMES FOR CANCER, CARDIAC
AND MANY OTHER PATIENTS

Sue Walsh, a breast-cancer patient who took part in a trial of an innovative imaging technique called Quantitative Ultrasound, a technology that can pinpoint dead cancer cells.


For seven months, Sue Walsh received chemotherapy for breast cancer at Sunnybrook. The treatment itself wasn’t new, but there was something different this time around: Instead of having to wait six to eight months until the end of the chemo to see if the drugs worked, Sue and her doctors were able to detect the cancer changing within a few weeks of each treatment.

“To be able to tell early on if a treatment is working is truly amazing,” says Sue, a Toronto resident who was part of clinical studies in 2012 for a made-in-Sunnybrook innovation known as QUS (Quantitative Ultrasound), a technology that uses advanced software and ultrasound imaging to pinpoint dead cancer cells. “In my case they could see it was working and that it reinforced what the oncologist’s physical exams were saying – the tumour was shrinking. When they did the biopsy [at the end of the study] to confirm the results, they saw that the number of cancer cells was significantly less.”

Sue’s experience is just one example of how doctors at Sunnybrook are using state-of-the-art medical imaging technology and techniques for the way they diagnose, target the delivery of treatments and track treatment responses to better tailor treatment.

“These are exciting times,” says Dr. Masoom Haider, chief, department of medical imaging at Sunnybrook and senior scientist at Sunnybrook Research Institute’s Odette Cancer Research Program. “Sunnybrook is definitely doing leading-edge work in the area of imaging – from using it to better assess patients to applications where imaging is used to guide the treatment and see how it’s working,”

Imaging projects at Sunnybrook fall into three main categories: diagnostic, therapeutic and “theranostic” – a hybrid of the first two categories. Diagnostic imaging is focused on imaging to detect and characterize disease, while therapeutic uses imaging to guide treatment. In the third category, imaging is used to predict effectiveness of therapy and to provide patients with the greatest benefit from treatment.

To support its advanced imaging projects, Sunnybrook has made a number of recent capital investments, including the purchase of a cyclotron, a machine that creates the radioactive isotopes injected into patients ahead of a positron emission topography (PET) scan of their internal organs.

The isotopes from the cyclotron go into decay within minutes. Having the machine right at Sunnybrook will allow doctors to produce this material on-site, says Dr. Haider. This is more cost-effective and also makes it easier for Sunnybrook scientists to develop new chemical agents that can provide more insight into a wide variety of diseases.

An example of an advanced imaging project in Dr. Haider’s department is the “smart biopsy,” which involves the use of magnetic resonance and ultrasound imaging to diagnose prostate cancer. By fusing magnetic resonance images with ultrasound results, doctors are able to locate and trace a tumour and zero in for a biopsy.

This makes the diagnostic process less painful and disruptive for patients, says Dr. Haider. More importantly, it increases the chances of catching and treating the cancer early, leading to better outcomes.

This novel application of MRI technology made all the difference for Kim Stewart, who learned in the fall of 2012 that his PSA levels were abnormally high.

After a 15-needle biopsy at another medical facility failed to detect cancer, Kim was referred to Sunnybrook, where an MRI-guided biopsy enabled his doctor, Dr. Danny Vesprini, radiation oncologist of Sunnybrook’s Odette Cancer Centre Genitourinary Cancer Care Team, to definitely confirm he had cancer. Kim had surgery last October to remove the cancer and says he is now in the clear.

“Knowing my PSA was very high, but not being able to confirm whether or not I had cancer – that was very confusing and worrying,” he says. “The fact that Sunnybrook was able to find the cancer through the MRI and do a biopsy that took only six needles was pretty amazing.”

Sunnybrook’s work in imaging cuts across a wide range of diseases, from cancer and heart disease to stroke and Alzheimer’s disease. With some imaging projects at Sunnybrook, the technology is homegrown, while in others it’s the application of existing equipment that’s unique and innovative.

Single page

Follow us on Twitter: @Globe_Health

 

Topics:

Recent Articles & Appointments