Go to the Globe and Mail homepage

Jump to main navigationJump to main content

Geordie Rose, founder of D-Wave Systems Inc., standing in front of the D-WaveOne Quantum Computer.
Geordie Rose, founder of D-Wave Systems Inc., standing in front of the D-WaveOne Quantum Computer.

Canada Competes

The black box that could change the world Add to ...

But D-Wave isn’t building a general-purpose quantum computer, he adds. “It does one very specific class of problems really, really well, and that’s pretty much all it does,” he says. “But luckily that class of problems has wide applicability.”

For example, it could eventually use a person’s genome to determine how they will respond to a particular drug, Dr. Rose says. “Virtually anything that a human does well that conventional computers currently are not good at is something that’s going to be affected by these systems.”

So far, quantum computers are only starting to deliver on that promise. In 2009, for instance, scientists at Google Inc. used a D-Wave system to accurately detect cars in images. Dr. Rose describes such automatic detection as a fundamental problem in AI. “In some ways, understanding how we do that is the key to unlocking intelligence in machines,” he says.

When D-Wave launched, the field of quantum computing was largely theoretical, Dr. Rose recalls. “It was very early, but it wasn’t so early that the science hadn’t been in some ways proven out,” he says. “There were enough results that had been garnered from the scientific study of these things to think that there was nothing written in the laws of physics that prevented you from trying to build one.” So he and his colleagues mapped out the couple of dozen areas that someone would need to understand in order to build a real quantum computer, from the user experience to the physical devices inside the chips. Then they looked for scientists around the world with expertise in those areas and asked if they would be interested in helping D-Wave.

The company gave its researchers funding and access to the rest of the network it was building. In exchange, it got control of the intellectual property they produced and the right to file patents before they published their findings.

Over the next five years, D-Wave’s network expanded to include groups with ties to 10 academic institutions in Canada, Germany, the Netherlands, the Slovak Republic, Sweden, Britain and the Ukraine. As early as 2001, the start-up had access to $440-million worth of equipment.

D-Wave took an entrepreneurial approach to running tests that would otherwise have been very expensive, says Ajay Agrawal, Peter Munk Professor of Entrepreneurship at the University of Toronto’s Rotman School of Management. “If you had all of the equipment in-house, you’d have to be a very large company, like an IBM,” explains Dr. Agrawal, who co-authored a 2004 Harvard Business School case study on D-Wave. “So how does an entrepreneur do it? By leveraging the assets that are out there and in many cases underutilized, and rather than paying the full cost, paying only the marginal cost.”

D-Wave handled what was probably the riskiest stage of its life in a surprisingly careful and efficient way, says Alexei Andreev, executive vice-president and managing director at the Palo Alto, Calif., office of venture capital firm Harris & Harris Group Inc., another investor. “Instead of trying things sequentially, they did it in parallel,” the D-Wave board member says.

By 2003, D-Wave had assembled a portfolio of knowledge and patents that was unrivaled in the quantum computing field, Dr. Rose says. At a very early stage, the company focused on protecting its intellectual property through patents, notes director Geoff Catherwood, a Vancouver-based partner with BDC Venture Capital’s Energy/Clean Tech fund. “When we invested, they had under 20 employees, but they had three people dedicated to IP,” says Mr. Catherwood, whose firm closed its first D-Wave investment in 2002.

After weighing all of its options, D-Wave started to build the computer. Drawing on its findings from the research network, it settled on a particular model of quantum computing for the product it went on to develop in Burnaby. “Now we have this thing that has been remarkably successful at solving the kinds of problems it’s designed to solve, and the markets that it addresses are huge,” Dr. Rose says. “So I think that the guess that we made at the end of the collection of all of this information was the right one.”

Single page

Follow us on Twitter: @GlobeBusiness

In the know

Most popular video »

Highlights

More from The Globe and Mail

Most Popular Stories