Skip to main content

Alan Bernstein is the president and CEO of CIFAR (the Canadian Institute for Advanced Research), and was the founding president of the Canadian Institutes of Health Research.

In June of last year, federal Minister of Health Rona Ambrose launched a new Advisory Panel on Healthcare Innovation. This important panel, chaired by Dr. David Naylor, is charged with advising government on areas of innovation that could bring the greatest value to Canada's health care system.

Two months later, British Prime Minister David Cameron launched the 100,000 Genomes Project. Its goal is to sequence the complete genomes of 100,000 people with cancer or other diseases and ultimately relate these genetic changes to better diagnostics and treatments. This project is feasible because the cost and time required to sequence complete human genomes has fallen from $3-billion and four years, to about $1,000 and less than a week.

The information emerging from genomics heralds a new era of personalized or precision medicine. New ways of diagnosing, treating and preventing disease will be based on our rapidly emerging understanding of human health and disease.

Treating disease based on understanding seems intuitively obvious: how can you fix a car if you don't know what's wrong with it? But when I started out in cancer research in the 1970s, there were only vague hints of what lay behind the abnormal behavior of cancer cells. Consequently, there was no obvious path forward.

Today, we know that all cancers result from changes in our genes. And we now have the molecular and computational tools to scan the three billion bases of DNA that make up our genome, and identify the changes that are contributing to the cancer in any given patient.

From this new understanding is emerging entirely new ways of diagnosing and treating cancer. Other advances – including new diagnostic imaging modalities, immunotherapy, and stem cells – have created a rich and diverse palette of approaches to solving the challenge of human cancer.

Contrast this with schizophrenia, bipolar disease, and age-related dementia. Twenty per cent of Canadians will experience a mental illness sometime over their lifetimes. Despite their importance, this large and diverse group of brain disorders is poorly understood. As a result, diagnostic and therapeutic approaches are neither precise nor effective, nor do we have a clear path forward. But our experience cracking the cancer problem will soon transform how we diagnose, treat or prevent this complex set of human illnesses.

At a recent meeting of CIFAR's program in genetic networks, CIFAR Fellows from the University of British Columbia, the University of Toronto and the Hospital for Sick Children presented groundbreaking research on new ways to analyze and understand genomic alterations involved in cancer, autism, spinal muscular atrophy and other diseases. This research is opening up new understanding of the consequences of these genetic alterations, and new ways of diagnosing disease, identifying at-risk individuals, and developing better drugs.

As the Naylor panel contemplates changes in health care delivery, there is a larger lesson to learn from this research: a modern, cost-effective health care system is not the old system plus genomics. It will be a new health care system, an entirely new paradigm for organizing and implementing care based on our emerging understanding of human biology and the complex interactions between our genetic inheritance and our life experiences. It is not nibbling around the edges of the health care system, tinkering with the odd change here or there. Rather, it will demand a new way of organizing health care, requiring new skills and new infrastructure.

I have two recommendations for the Naylor Committee: first, don't focus on process and governance. That's a uniquely Canadian pastime and an excuse for avoiding real change. Instead, focus on building a health system for the 21st centure, not the 20th. In partnership with the provinces, the federal government should launch a decade-long multimillion dollar initiative whose goals are threefold: first, to employ the new science of "omics" to understand the underlying biology of human health and disease and to integrate that understanding into rapid and precise clinical diagnostics; second, to harness that understanding to develop, in partnership with industry, precision therapies that are targeted to the molecular alterations responsible for disease; and third, to develop targeted prevention strategies based on our emerging ability to identify individuals at risk based on the interplay between our genetic inheritance and lifestyle.

The Naylor panel can chart a course for Canada's health system based on the revolution in our understanding of the biology of human disease. Canada has the opportunity to lead the world in building a health system that takes full advantage of today's science, and that stands ready to contribute to and benefit from tomorrow's science. That would be true healthcare innovation.